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INTRODUCTION



SEARCH IS NO LONGER JUST ABOUT LINKS

- Traditional IR: retrieve and o i :
ra n k d O C u m e n tS @ is there an eighth episode of last of us Q

Qi Images

- LLM-powered IR: understand,
summarize, and answer.

Summarizer

Episode 8 of The Last Of Us is set to drop on HBO Max Sunday 5th March at
pm (ET) / 6pm (PT).
For those in the UK. the show will drop on Sky Atiantic ive at 2am (GMT) and then

- Tools like Bing, Brave,
Perplexity, and Gemini
integrate LLMs to deliver = T Lasof U Rlss Shac:Whenos st
instant summaries. i 23 S e s et 1

o

. U Se rs n OW eXpeCt a nSWe rs’ D;”Th‘e Last?f Us Episode 8 Preview: Release Date, Time & Where
not jUSt |.| n kS Example: Brave Search summarizing results via LLM.
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WHY THIS SURVEY MATTERS

- LLMs are transforming not just how we generate language,
but how we access and retrieve information.

- Classical IR relies on indexing and keyword matching —
effective, but limited in understanding intent.
- In contrast, LLMs enable:

o semantic understanding,
o multi-turn conversational context,
o and end-to-end answer generation.
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FROM IR PIPELINE TO LLM-ENHANCED MODULES

LLMs are transforming
INFORMATION RETRIEVAL

g

- This survey focuses on how LLMs
enhance the four core
components of IR:
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Query
Rewriter

K LLM A
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[ Retriever

1. Query Rewriter
2. Retriever

3. Reranker

4. Reader

- Each module faces new
opportunities — and new
challenges — with the advent of
LLMs.

Illustration of modular IR pipeline adapted
to LLMs. Al generated.
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BACKGROUND



FROM CLASSICAL IR TO NEURAL RETRIEVAL

- Traditional IR systems’ rely on:
o keyword matching (e.g., Boolean models [1], BM25 [2]),
o vector space models (cosine similarity),
o statistical models (language models).
- Neural IR improves by leveraging:
o learned dense embeddings,
o pre-trained language models (e.g., BERT [3]).
- LLMs extend this further: beyond matching, toward
understanding and generation.

TLectures 31-3.4, BDDM A.A. 2024/25, F. Bertini
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LARGE LANGUAGE MODELS: A QUICK OVERVIEW

Output
Probabilities
- LLMs are transformer-based models [4]
with billions of parameters.
Forward
Key types . Multi-Head
o Encoder-only - understanding s |
o Decoder-only - generat]on - i
o Encoder-decoder - flexible Hentont e
. - -
- Learning styles: i o
Encoding Encoding

o In-context learning ] B
o Fine-tuning 1 f
o RAG (retrieval-augmented generation)

Inputs Outputs
(shifted right)

Source: Vaswani et al,, “Attention Is All You
Need’; 2017.
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QUERY REWRITING



QUERY REWRITING: ENHANCING THE USER INTENT

- First step in the IR pipeline: improve the quality of the
user query.

- Classical techniques: query expansion, pseudo-relevance
feedback.
- LLMs allow rewriting queries using:
o Prompting: zero/few-shot style reformulation.
o Fine-tuning: domain-specific transformations.
o Knowledge distillation: compress LLM behavior into
smaller models.
- Particularly useful in:

o ad-hoc search with ambiguous queries,
o multi-turn conversational search.
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QUERY2DOC: FEW-SHOT PSEUDO-DOCUMENT GENERATION

- Query2Doc [5] reframes query
rewriting as text generation.

Instruction Demonstrations Input (context)

- It uses few-shot prompting T T
Query: what state is this zip code 85282

( | n-con text lea rn | n g) to gu | d e th e Nx | Passage: Welcome to TEMPE, AZ 85282. 85282 is a rural zip code in Tempe,

Arizona. The population is primarily white...

Query: when was pokemon green released?
LLM fEpEE e .
[ Large Language Models J
- Prompt examples are drawn from v

Pokemon Green was released in Japan on February 27th, 1996. It was the
first in the Pokemon series of games and served as the basis for Pokemon
Red and Blue, which were released in the US in 1998. The original Pokemon
Green remains a beloved classic among fans of the series

’

7
IR systems ]

Generated
passage

the MSMARCO dataset [6].

- The model generates a
pseudo-document that simulates a  figure from the original paper.
relevant passage, used to retrieve
real documents more effectively.

—
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QUERY REWRITING: CONCEPT DRIFT AND TRADE-OFFS

- Concept drift [7, 8, 9]:
o LLMs may inject unrelated details when rewriting queries.
o This can dilute the core intent of the original question.
o Often caused by the LLM's tendency to be verbose or
over-informative.
- Retrieval performance degradation [10]:
o Expansion improves weak retrievers, but often harms
stronger ones.
o Expansion may help align queries with the expected format
when the corpus diverges from the training distribution.
- Key takeaway:

o Query rewriting must be target-aware and retriever-aware.
o More rewriting # better results.
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RETRIEVER




RETRIEVER: FROM CLASSICAL TO LLM-BASED

- The retriever selects candidate documents likely to be
relevant to a query.
- Classical methods:
o Sparse retrievers — keyword-based (e.g., BM25 [2]).
o Dense retrievers — neural representations (e.g., DPR [11]).
- LLMs improve retrieval in two complementary ways:

1. Data augmentation — generate synthetic queries and
labels for dense retrievers.

2. Model enhancement — build better retrievers using LLM
architectures.
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LLMS FOR DATA AUGMENTATION IN RETRIEVAL

- Motivation: manual annotation of training data is
expensive and domain-specific.
- LLMs can generate synthetic training signals:

o Pseudo-query generation: generate questions for existing
documents (e.g., InPairs [12] + GPT-3 [13]).

o Relevance label generation: assign soft relevance scores
to query-document pairs (e.g., ART [14]), used as training
targets for dense retrievers.

- Enables few-shot and zero-shot retrieval training across
domains.
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LLMs AS RETRIEVER MODELS

- LLMs can serve as the retriever itself, not just as a data
generator.
- Three main approaches:
1. Dense retrievers: use LLMs as encoders to map queries
and documents into vector space (e.g., GTR [15], RepLLaMA
[16])
2. Task-aware retrievers: prepend task-specific instructions
to queries to guide retrieval (e.g., TART [17])
3. Generative retrievers: LLM decodes document identifiers
directly from queries (e.g, DSI [18], LLM-URL [19])
- These models leverage LLMs' semantic understanding for
more accurate and flexible retrieval.
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RERANKER




RERANKER: SECOND-PASS FILTERING

- The reranker receives the candidate documents from the
retriever.

- It refines the ranking by evaluating the query-document
relevance more precisely.
- With LLMs, three usage paradigms emerge:
1. Supervised rerankers
2. Unsupervised rerankers
3. LLM-assisted data augmentation

- Goal: assign better scores - improve top-ranked results.
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SUPERVISED LLM RERANKERS

- LLMs are fine-tuned on labeled datasets (e.g., MSMARCO)
to learn relevance signals.
- Three architectural types:
1. Encoder-only: monoBERT [20] uses the embedding for
scoring ([CLS] query [SEP] document [SEP]).
2. Encoder-decoder: T5 [21] generates a classification token
(true/false).
3. Decoder-only: RankLLaMA [22] formats input as a prompt
(query: {query} document: {document} [EOS])
and uses the last token’s embedding.

- Loss functions: cross-entropy, pairwise, listwise.
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UNSUPERVISED RERANKING WITH LLMS

- Large LLMs (10B+ params) make fine-tuning difficult, so
prompting is used for unsupervised reranking.
- Three main methods:

1. Pointwise: Score each query-document pair
independently. Open-source models required: to access
the logits of the "YES” and "NO” tokens.

2. Listwise: rank a list of documents at once; better accuracy
but costly and sensitive to input order.

3. Pairwise: compare document pairs to build ranking; good
accuracy but computationally expensive.

- Prompt engineering and few-shot examples improve
results.
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READER




LLM-BASED READER: TYPOLOGIES AND STRATEGIES |

-+ The reader generates answers from top-ranked
documents retrieved by the IR system.

- Reader models differ in how they interact with the
retrieval process:
1. Passive Readers — receive documents from the IR system
and generate answers.
x Once-Retrieval (e.g., RAG [23]): retrieve once at the
beginning.
% Periodic-Retrieval (e.g., RETRO [24]): retrieve during
generation (every n tokens).
* Aperiodic-Retrieval (e.g., FLARE [25]): retrieve when
confidence is low.
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LLM-BASED READER: TYPOLOGIES AND STRATEGIES I

2. Active Readers — LLMs autonomously decide when and
what to retrieve.

x Formulate follow-up queries (e.g., Self-Ask [26]);
% Build reasoning chains across retrieval iterations;
3. Compressors — reduce retrieved content to fit LLM input
limits.

x Extractive (e.g., LeanContext [27]) or abstractive (e.g.,
TCRA [28]) compression.

- These strategies balance accuracy, interactivity, and
computational efficiency.
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RETRIEVAL-AUGMENTED GENERATION (RAG)

- RAG [23] integrates a retriever and a generator in a single

architecture.

- At inference time:

o Aretriever selects top-k documents given a query.
o A generator (LLM) conditions on both query and
documents to produce an answer.

- Advantages:

o Combines factual grounding (retriever) with fluent
generation (LLM).
o Allows open-book reasoning with up-to-date information.

- Limitation: risk of hallucinating content not grounded in

M. Di Agostino
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SEARCH AGENTS




SEARCH AGENTS: WEBGPT AND REACT

- Goal: mimic human browsing to SEARCH AGENT

search, interpret, and synthesize
autonomously.
- WebGPT [29]
o Answers questions via web
browsing
o Cites sources; reward model
encourages factuality
- ReAct [30]

o Interleaves Thought and Action
o Generates reasoning steps and
search commands

LLM as a search agent. Al generated.
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CONCLUSION




LOOKING AHEAD: FUTURE DIRECTIONS

- Query rewriting: improve personalization and
reward-aware reformulation.

- Retriever: reduce latency, support multimodal and
updatable indexes.

- Reranker: enhance online efficiency and adapt to diverse
ranking tasks.

- Reader: increase factuality and snippet selection to avoid
hallucinations.

- Evaluation: go beyond relevance—measure generation
quality and faithfulness.
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