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The problem

We would like to say something about the following:

1 int absSum(ListInt l) {
2 int sum = 0;
3 ListInt it = l;
4
5 while(it != null) {
6 if (it.f < 0)
7 it.f = -it.f;
8
9 sum += it.f

10 it = it.next;
11 }
12 return sum;
13 }

Listing: Sum of absolute values of a list of integers.
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The problem

1 int absSum(ListInt l) {
2 int sum = 0;
3 ListInt it = l;
4
5 while(it != null) {
6 if (it.f < 0)
7 it.f = -it.f;
8
9 sum += it.f

10 it = it.next;
11 }
12 return sum;
13 }

Two clients, different needs:
Angle-Right Client 1: absSum([1, -2])
Angle-Double-Right Fixed list, 2 nodes at labels p1, p2

l p1 p2 null

f:[1, 1] f:[−2,−2]

next next

Angle-Right Client 2: absSum([li ∈ Z]),
1 ≤ i ≤ n

Angle-Double-Right Dynamic list, n unknown
Angle-Double-Right Summary node u1 abstracts all

nodes

l u1 null

f:(−∞,+∞)

next

next
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What we have
The Allocation-Site method

Client 1 (fixed list)

l p1 p2 null

f:[1, 1] f:[−2,−2]

next next

Client 2 (dynamic list)

l u1 null

f:(−∞,+∞)

next

next

Property Client 1 Result Client 2 Result

P1: No NullPointer
(Heap Structure)

Check Safe
Heap structure is precise

Check Safe
Summary handle nulls

P2: Return ≥ 0
(Sign Analysis)

Check Verified
Strong updates on p1, p2

Times False Alarm
Weak update on u1

P3: Elem ≥ 0
(Relational)

Check Verified
Relations preserved

Times False Alarm
Relations lost on u1
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Materialization: The First Step

The Shape Analysis

When iterating the loop, the Heap Analysis must materialize the
summary node u1 to distinguish the current element from the rest:
Angle-Right A concrete node it (the current element).
Angle-Right A remaining summary node u′1 (the rest of the list).

u1

it

u′
1

Materialize

Heap Analysis

Pre-state:
u1.f ∈ (−∞,+∞)

Post-state:
it.f ∈ ?
u′
1.f ∈ ?

Value Analysis

N
O

A
U

T
O

M
AT

IC
C

O
M

M
U

N
IC

AT
IO

N
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The Consequence: Information Loss

What we miss: When u1 splits into it and u′1, where should the
information u1.f ∈ (−∞,+∞) go?

Before After Materialization

u1.f ∈ (−∞,+∞)
materialize−−−−−−→

{
it.f ∈ (−∞,+∞)

u′1.f ∈ (−∞,+∞)

Remark (Consequence: False Alarms)

Without guidance from the Heap Analysis, the Value Domain con-
servatively assumes top for both it.f and u′1.f .
This forces analysis of the branch ‘if (it.f < 0)’, causing false
alarms on properties P2 and P3.



H
ea

p
an

d
va

lu
e

an
al

ys
is

—
M

an
ue

lD
iA

go
st

in
o

The Solution: Substitutions

Key Idea: The Heap Analysis communicates how identifiers are
transformed through a substitution message:

{it.f, u′1.f} 7→ {u1.f}

What the framework does:
1 Heap Analysis materializes {it, u′1} 7→ {u1}
2 Produces substitution: {it.f, u′1.f} 7→ {u1.f}
3 Value Domain receives substitution
4 Value Domain automatically updates its state:

Angle-Double-Right it.f ∈ (−∞,+∞)
Angle-Double-Right u′

1.f ∈ (−∞,+∞)
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The Solution: Substitutions

Key Idea: The Heap Analysis communicates how identifiers are
transformed through a substitution message:

{it.f, u′1.f} 7→ {u1.f}

Remark
Angle-Right Inside the branch if (it.f < 0), the analysis knows it.f

is negative.
Angle-Right Since it is materialized, it.f = -it.f performs a strong

update.
Angle-Right The value is overwritten to (0,+∞), so we sum only

non-negative values!
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The Concrete Domain I

In a concrete execution, a standard object-oriented state holds two
distinct types of data:
Angle-Right Values (Val): Primitive data (integers, booleans, etc.)
Angle-Right References (Ref): Pointers to objects or null

INFO-CIRCLE Information

Common in statically typed object-oriented programming lan-
guages like Java and C#.
It does not apply to imperative programming languages like C
where references are threated as values (e.g., with pointer arith-
metic).
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The Concrete Domain II

Scope Toy Language Definition (Syntax) Target Domain Component

Reference
rexp ::= x | x.f | new C

rcond ::= x � null | x � y

ΣRef = EnvRef × StoreRef
(Heap Analysis, e.g., TVLA)

Value
vexp ::= x | x.f | v1 � v2
vcond ::= v1 � v2

ΣVal = EnvVal × StoreVal
(Value Analysis, e.g., Intervals)

Statements st ::= x = rexp | x = vexp | . . . Interaction via Substitutions

Table: Expressions, conditions and statements.
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The Concrete Domain III

Definition (Concrete State)

The state Σ is composed of an environment and a store where types
are mixed:
Angle-Right Environment: Maps local variables to references or values.

Env : Var→ (Ref ∪ Val)

Angle-Right Store: Maps heap locations (reference + field) to references or
values.

Store : (Ref× Fld)→ (Ref ∪ Val)

The resulting state is then the cartesian product:

Σ = Env× Store
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The Split Domain I

To enable generic analysis combination, we formally split the concrete
domain into two disjoint components.

Reference State (ΣRef)
Tracks only topology and
pointers.

Angle-Right EnvRef : Var→ Ref
Angle-Right StoreRef :
(Ref× Fld)→ Ref

Value State (ΣVal)
Tracks only primitive
values.

Angle-Right EnvVal : Var→ Val
Angle-Right StoreVal :
(Ref× Fld)→ Val



H
ea

p
an

d
va

lu
e

an
al

ys
is

—
M

an
ue

lD
iA

go
st

in
o

The Split Domain II

Definition (Split State ΣSplit)

The resulting state is the cartesian product of the two components:

ΣSplit = ΣRef × ΣVal

Angle-Right This domain is isomorphic to Σ but structurally separated.
Angle-Right We can regard ΣSplit as a superstructure that is more convenient

to abstract.
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The Abstraction Hierarchy

Abstract States
(Σ)

Heap (H)

l p1 p2
next

Value (V)
HId Int

p1.f [1..1]
p2.f [2..2]

Split States
(ΣSplit)

Ref State (ΣRef)
Var Ref

l #1
Ref Fld Ref

#1 next #2

Val State (ΣVal)
Ref Fld Val

#1 f 1
#2 f 2

StoreHId
HId Val

p1.f 1
p2.f 2

Concrete States
(Σ)

Unified State (Σ)
Var Content

l #1
Ref Fld Content

#1 f 1
#1 next #2
#2 f 2

γH

γVγStoreHId

γSplit

γSplit

γHId
(Map HId → Ref)
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Handling Mixed Expressions: Function R I

In the split domain, value expressions often depend on the heap (e.g.,
accessing x.f).

The Challenge

The Value Analysis (ΣVal) needs to evaluate x.f, but it is “blind” to
pointers: it does not know which reference x targets .

The Solution: Preprocessing Function R
We introduce R to replace local variables in field accesses with their
concrete references from the Reference State (ΣRef).

Transformation Rules:

RJx, (eRef, sRef)K = x

RJx.f, (eRef, sRef)K = 〈eRef(x)〉.f
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Handling Mixed Expressions: Function R II

Integration in Semantics (Field Assignment): To evaluate
x.f = vexp, we apply R to resolve pointers on both sides, then
delegate to Value semantics:

〈
Target Loc︷ ︸︸ ︷

RJx.f, σRefK =

Resolved Expr︷ ︸︸ ︷
RJvexp, σRefK, σVal〉 →Val σ

′
Val

〈x.f = vexp, (σRef, σVal)〉 →Split (σRef, σ
′
Val)
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Soundness: Lattice and Concretization

Lattice Structure
The Concrete Domain forms a complete lattice structure induced by
standard set operations. The order is defined by set inclusion on the
powerset of states:

〈℘(Σ),⊆〉

Like the concrete one, the lattice structure of the Split Domain is
given by set of elements:

〈℘(ΣSplit),⊆〉
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Definition (Concretization γSplit)

Defines how split states map back to concrete states via pointwise
set union:

γSplit(T ) = {(ev ∪ eh, sv ∪ sh) | ((eh, sh), (ev, sv)) ∈ T}

INFO-CIRCLE Information

Crucial Assumption: Since the language distinguishes between
value and reference expressions, the domains of ev/eh and sv/sh
do not overlap.
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Lemma (Galois Connection)

Since γSplit is a complete ∩-morphism (based on set operators), it
induces a valid Galois Connection:

〈℘(Σ),⊆〉 −−−−−→←−−−−−
αSplit

γSplit
〈℘(ΣSplit),⊆〉

where αSplit = λX. ∩ {Y : X ⊆ γSplit(Y )}.

Proof.
αSplit is well-defined since γSplit is a complete ∩-morphism since it is
based on set operators. The fact that it forms a Galois connection
follows immediately from the definition of αSplit [CC77].
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The Generic Abstract Domain

The framework is designed to be parametric. We assume the
existence of two abstract domains interacting to approximate the
Split State.

1. Heap Analysis (H)
Approximates the reference state ΣRef.
Angle-Right Lattice: 〈H,vH,tH,uH〉
Angle-Right Widening: ∇H

2. Value Analysis (V)
Approximates the value state ΣVal.
Angle-Right Lattice: 〈V,vV,tV,uV〉
Angle-Right Widening: ∇V
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The combined abstract state is the Cartesian product:

Σ = H× V

equipped with pointwise lattice operators.
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Connecting Heap and Value: Heap Identifiers

The two domains need a common language to communicate.
Angle-Right Heap Domain (H): Knows about pointers, structure, and

reachability. It abstracts memory addresses (A).
Angle-Right Value Domain (V): Knows about numerical properties

(intervals, polyhedra), but operates on a set of variables, not
addresses.

The Solution: Abstract Heap Identifiers
The Heap Domain exports a set of symbolic names, called Heap
Identifiers.

HId = {id1, id2, . . . , idn}

Angle-Right To H, they represent abstract nodes (or regions of memory).
Angle-Right To V, they are treated simply as variables.
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Value Analysis Concretization
Since the Value Analysis operates on identifiers, its concretization
produces stores with abstract heap identifiers instead of concrete
locations.

Abstract Store on Identifiers

StoreHId : HId→ ℘(Val)

Codomain is a set of values because a summary node maps to many
concrete references with different values.

Definition (γV)

The concretization of an abstract value state v̄ ∈ V produces:
1 Environments in EnvVal

2 Stores in StoreHId

Missing link: We have values for identifiers, but we need to know
where these identifiers are in memory.
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Heap Analysis Concretization
The Heap Analysis tracks the shape and symbolically represents
nodes using HId. To concretize, it must map these symbols to
concrete locations.

The Mapping Function γHId
The heap concretization provides a function relating identifiers to
concrete locations (Ref× Fld):

γHId : HId→ ℘(Ref× Fld)

Definition (γH)

Formally, γH : H→ ℘(ΣRef × (HId→ ℘(Ref× Fld)))
It returns a set of pairs containing:
Angle-Right A concrete state σH.
Angle-Right A concretization of heap identifiers γHId to compute γV.
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The Final Combined Concretization γΣ

Finally, we define the concretization of the abstract state (h̄, v̄) into
the Split domain.

Definition (γΣ)

Formally, γΣ
(
(h̄, v̄)

)
: Σ→ ℘(ΣSplit)

γΣ
(
(h̄, v̄)

)
= {(σH, (ev, sv)) | conditions hold}

where:
Angle-Right (ev, sHId) ∈ γV(v̄)

(Value Analysis provides EnvVal and StoreHId)

Angle-Right (σH, γHId) ∈ γH(h̄)
(Heap Analysis provides a state in ΣRef and ID-map)

Angle-Right sv ∈ γStoreHId
(sHId, γHId)

(Combined to get concrete StoreVal)



H
ea

p
an

d
va

lu
e

an
al

ys
is

—
M

an
ue

lD
iA

go
st

in
o

The Abstraction Hierarchy
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Soundness conditions

Remark (Requirements for Soundness (Conditions C1–C5))

The validity of the following Lemma relies on strict conditions on
γHId:
Angle-Right Structural Consistency (C1, C3, C5):

Angle-Double-Right All heap identifiers must be concretizable (C1).
Angle-Double-Right Identifiers must represent disjoint memory portions to allow

independent updates (C3).
Angle-Double-Right Non-summary nodes must map to exactly one reference (C5).

Angle-Right Mathematical Properties (C2, C4): These ensure γΣ is
meet-preserving. The heap identifiers’ concretization of
the intersection of heaps is the pointwise intersection of the
heap identifiers’ concretization of all the intersected states.
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Lemma (Galois Connection)

Since γΣ is a complete ∩-morphism (based on set operators), it
induces a valid Galois Connection:

〈℘(ΣSplit),⊆〉 −−−−→←−−−−
αΣ

γΣ 〈Σ,v〉

where αΣ = λX. ∩ {Y : X ⊆ γΣ(Y )}.
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Abstract Preprocessing: Function R I

In the abstract domain, the Value Analysis (V) tracks information on
Heap Identifiers (abstract nodes), not on raw pointer paths.

The Abstract Solution
We define the abstract preprocessing function R to translate field
accesses into the corresponding set of Heap Identifiers provided by
the Heap Analysis (H).
Unlike the concrete case, this translation may return multiple results
(e.g., if a variable points to multiple abstract nodes).
Abstract Transformation Rules :

RJx, hK = {x}
RJx.f, hK = I where 〈x.f, h〉 →H I

Note: I is the set of heap identifiers (e.g., {id1, id2}) retrieved by the
Heap Analysis.
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Abstract Preprocessing: Function R II

Semantics Integration (Updates)
Once R resolves the field access, the Value Analysis performs the
assignment. Formally, we compute the join of all possible outcomes
for each identifier i returned by R:

vnew =
⊔{

v′ | i ∈ RJx.f, hK, 〈i = . . . , v〉 →V v′
}

The final state depends on the precision of the Heap Analysis:
Angle-Right Strong Update: If i is unique and definite (¬isSum(i)), the old

value is replaced:
vpost = vnew

Angle-Right Weak Update: If i is a summary node or multiple identifiers
exist, we must join with the previous state to preserve soundness:

vpost = v tV vnew
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Instantiation: Heap Analyses - PA

The framework is validated by plugging in two different heap
abstractions:

1 Pointer Analysis (PA)
A flow-sensitive analysis based on Allocation Site Abstraction
[And94; MSV10].
Angle-Double-Right Heap Identifiers: Defined by the allocation site label and the

field name:
HIdPA = Lab× Field

Angle-Double-Right Substitutions: Since abstract locations are statically determined,
no dynamic splitting occurs. Therefore, substitutions are always
empty (∅).



H
ea

p
an

d
va

lu
e

an
al

ys
is

—
M

an
ue

lD
iA

go
st

in
o

Instantiation: Heap Analysis - TVAL+

2 TVAL+ (Shape Analysis)
Based on the 3-valued logic engine TVLA [SRW02].
Angle-Double-Right Identity: Introduces Name Predicates to track nodes across

transformations.
Angle-Double-Right Normalization: A merge/split procedure ensures states are

normalized.
Angle-Double-Right Substitutions: Generated dynamically to inform the value

analysis about node materialization and summarization.
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Instantiation: Value Analysis

The generic framework allows standard numerical domains to track
information over heap contents.

3 Numerical Domains
Standard domains (e.g., Intervals, Octagons) are plugged into
the value component.
Angle-Double-Right Transparency: Heap Identifiers (HId) are treated transparently,

exactly as local variables.
Angle-Double-Right Handling Summaries: To preserve soundness, assignments to

summary nodes (isSum(id) = true) are handled via weak
updates (join of old and new values).

Conclusion on Instantiation: The framework successfully bridges static
approaches (PA) and dynamic approaches (TVLA) with numerical reasoning
without losing soundness.
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Conclusion and Contributions

The paper presented a formal approach to the static analysis of
object-oriented languages.
Key Contributions:
Angle-Right Generic Framework: A unified formalization to automatically

combine arbitrary Heap and Value analyses.
Angle-Right Handling Dynamics: The first generic framework capable of

supporting materialization and summarization of heap
identifiers.

Angle-Right Soundness: Proved soundness of the combination, relying on
standard Abstract Interpretation operators and a specific
interface (Substitutions).

Angle-Right Versatility: Successfully instantiated with:
Angle-Double-Right Standard Pointer Analysis (Static).
Angle-Double-Right TVAL+ / TVLA (Dynamic Shape Analysis).
Angle-Double-Right Numerical Domains (Value Analysis).
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Abstract States
(Σ)

Heap (H)

l p1 p2
next

Value (V)
Id Int

p1.f [1..1]
p2.f [2..2]

Split States
(ΣSplit)

Ref State (ΣRef)
Var Ref

l #1
Ref Fld Ref

#1 next #2

Val State (ΣVal)
Ref Fld Val

#1 f 1
#2 f 2

StoreHId
HId Val

p1.f 1
p2.f 2

Concrete States
(Σ)

Unified State (Σ)
Var Content

l #1
Ref Fld Content

#1 f 1
#1 next #2
#2 f 2

γH

γVγStoreHId

γSplit

γSplit

γHId
(Map HId → Ref)

Thank you for the attention!
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