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The problem

We would like to say something about the following:

1int absSum(ListInt 1) {

2 int sum = 0;
Il 3 ListInt it = 1;
Il 4
Ed 5 while(it != null) {
o if (it.f < 0)
] 7 it.f = -it.f;
S B

9 sum += it.f

10 it = it.next;

11}

12 return sum;

13}

Listing: Sum of absolute values of a list of integers.
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The problem

Two clients, different needs:

> Client 1: absSum([1, -2])
lint absSum(ListInt 1) { 3 Fixed list, 2 nodes at labels p;, po

2 int sum = 0;
(Bl 3 ListInt it = 1; null
o -
%4 5 while(it != null) {
N ¢ if (it.f < 0)
S it.f = -it.f;
S B

9 sum += it.f
| 10 it = it.next;

11 T

12 return sum;

133}

A
v
>
3]
c
(3]
(]
_:
(L]
>
©
c
©
Q.
[0}
[
I



The problem

Two clients, different needs:

> Client 1: absSum([1, -2])
lint absSum(ListInt 1) { 3 Fixed list, 2 nodes at labels p;, po

2 int sum = 0;
¥ 3 ListInt it = 1; null
o -
4 5 vhile(it != null) {
ol © if (it.f < 0) > Client 2: absSum([l; € Z1),
g 7 it.f = -it.f; 1<i1<n
s B » Dynamic list, n unknown
| 9 sum +f it.f » Summary node wu; abstracts all
10 it = it.next; nodes
11 T next
12 return sum; N ~<\

- next
13} [} w1 2= nui
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Heap and value analysis

What we have

The Allocation-Site method

Client 1 (fixed 1ist) Client 2 (dynamic 1ist)

@ next @ next I next
III""" nu RS
W -

4
’ next
[1}— u1 ==& null
A

-

Property Client 1 Result Client 2 Result
P1: No NullPointer « Safe v/ Safe
(Heap Structure) Heap structure is precise Summary handle nulls




What we have

The Allocation-Site method

Client 1 (fixed 1ist) Client 2 (dynamic 1ist)
o -y
c ’ next
= . Uy - -& null
0 N
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< Property Client 1 Result Client 2 Result
=
| P1: No NullPointer « Safe v Safe
(Heap Structure) Heap structure is precise Summary handle nulls
P2: Return >0 v Verified X False Alarm
(Sign Analysis) Strong updates on pj, p2 Weak update on uj
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What we have

The Allocation-Site method

Client 1 (fixed 1ist) Client 2 (dynamic 1ist)
next next next
8 \/1[ (Lnext
£ .\ 1=~ nul
g -
<
)
3
< Property Client 1 Result Client 2 Result
=
| P1: No NullPointer  + Safe v/ Safe
(Heap Structure) Heap structure is precise Summary handle nulls

n
‘B
= P2: Return >0 v Verified X False Alarm
& (Sign Analysis) Strong updates on pj, p2 Weak update on uj
[
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g P3: Elem >0 v Verified X False Alarm
= (Relational) Relations preserved Relations lost on u
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Materialization: The First Step

The Shape Analysis

When iterating the loop, the Heap Analysis must materialize the
summary node u; to distinguish the current element from the rest:

> A concrete node it (the current element).

> A remaining summary node u} (the rest of the list).

Heap Analysis ! Value Analysis

)

Pre-state:

Post-state:
it.fe?
uj.fe?
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The Consequence: Information Loss

What we miss: When u; splits into it and w}, where should the
information wu;.f € (—oo, +00) go?

Before After Materialization

teriali th [ (_OO,+OO)
ur.f € (—o0, +oc) materidlize, 1
uj.f € (=00, +00)

Remark (Consequence: False Alarms)

Without guidance from the Heap Analysis, the Value Domain con-
servatively assumes top for both it.f and u}.f.

This forces analysis of the branch ‘if (it.f < 0)', causing false
alarms on properties P2 and P3.




The Solution: Substitutions

Key Idea: The Heap Analysis communicates how identifiers are
transformed through a substitution message:

{it.foun.f} = {us.f}

What the framework does:

Heap Analysis materializes {it,u}} — {u1}
Produces substitution: {it.f, u}.f} — {u1.f}
Value Domain receives substitution

1 Value Domain automatically updates its state:

» gt.f € (—o0,+0)
» ul.f € (—o0,+00)
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The Solution: Substitutions

Key Idea: The Heap Analysis communicates how identifiers are
transformed through a substitution message:

{it.fouy. f} = {ur.f}

> Inside the branch if (it.f < 0), the analysis knows it.f
is negative.

> Since it is materialized, it.f = -it.f performs a strong
update.

> The value is overwritten to (0, +00), so we sum only
non-negative values!
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The Concrete Domain |

In a concrete execution, a standard object-oriented state holds two
distinct types of data:

> Values (Val): Primitive data (integers, booleans, etc.)

> References (Ref): Pointers to objects or null

0 Information

Manuel Di Agostino

Common in statically typed object-oriented programming lan-
guages like Java and C#.

It does not apply to imperative programming languages like C
where references are threated as values (e.g., with pointer arith-
metic).
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Heap and value analysis

The Concrete Domain |1l

Scope Toy Language Definition (Syntax) Target Domain Component
rexp =z | z.f | new C LRef = Eanef X Storegef
Reference (Heap Analysis, e.g., TVLA)
rcond :=zonull |z oy
vexp =1z | z.f | v1 0 vy Lval = Envyal x Storeva
Value (Value Analysis, e.g., Intervals)
veond = v1 © V2
Statements st :=xz =rexp |z =vexp]|... Interaction via Substitutions

Table: Expressions, conditions and statements.
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The Concrete Domain Il

Definition (Concrete State)

The state X is composed of an environment and a store where types
are mixed:

> Environment: Maps local variables to references or values.
Env : Var — (Ref U Val)

> Store: Maps heap locations (reference + field) to references or
values.

Store : (Ref x Fld) — (Ref U Val)

The resulting state is then the cartesian product:

Y. = Env x Store
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The Split Domain |

To enable generic analysis combination, we formally split the concrete
domain into two disjoint components.

Reference State (XRef) Value State (Xva)
Tracks only topology and Tracks only primitive
pointers. values.
> Envger : Var — Ref > Envy, @ Var — Val
? Storees : > Storey, :
(Ref x Fld) — Ref (Ref x Fld) — Val



The Split Domain I

Definition (Split State Xgp)

The resulting state is the cartesian product of the two components:

Ysplit = YRef X Lval

Manuel Di Agostino

> This domain is isomorphic to 3 but structurally separated.

> We can regard Yspit as a superstructure that is more convenient
to abstract.
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Heap and value analysis

Concrete States

(*)

Unified State ()
Var Content

| #1
Ref FId Content
#1 f 1
#1  next #2
#2 f 2

VSplie

opit

The Abstraction Hierarchy

Split States
(Xspiit)

Ref State (ERef)
Var Ref

I #1

Ref FIld Ref

#1  next #2

Val State (EVaI)
Ref FId Val

#1 f 1
#2 f 2




Handling Mixed Expressions: Function R |

In the split domain, value expressions often depend on the heap (e.g.,
accessing x.f).

The Challenge

The Value Analysis (Xva)) needs to evaluate x.f, but it is “blind” to
pointers: it does not know which reference x targets .

The Solution: Preprocessing Function R

Manuel Di Agostino

We introduce R to replace local variables in field accesses with their
concrete references from the Reference State (Xgef).

Transformation Rules:

Rz, (eRref, Sref)]| =

R[[LL‘.f, (eRefa sRef)]] = <eRef(X)>-f
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Handling Mixed Expressions: Function R |l

Integration in Semantics (Field Assignment): To evaluate
x.f = vexp, we apply R to resolve pointers on both sides, then
delegate to Value semantics:

Target Loc Resolved Expr

(Rlz.f, oref] = R[vexp, oref]; oval) —>val 0y,
(z.f = vexp, (ORef, Oval)) —*split (ORefs Oya))




Soundness: Lattice and Concretization

Lattice Structure

The Concrete Domain forms a complete lattice structure induced by
standard set operations. The order is defined by set inclusion on the
powerset of states:

(p(%), <)

Like the concrete one, the lattice structure of the Split Domain is
given by set of elements:

(p(Xspiit), €)
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Definition (Concretization vsp)it)

Defines how split states map back to concrete states via pointwise
set union:

'YSpIit(T) = {(ev Ueép, sy U Sh) | ((ehv Sh)a (evv Sv)) € T}

o Information

Crucial Assumption: Since the language distinguishes between
value and reference expressions, the domains of e, /ey, and s, /sy,
do not overlap.




Lemma (Galois Connection)
Since spjir is a complete N-morphism (based on set operators), it
induces a valid Galois Connection:

YSplit

(p(X), C) —= (p(Zspiit), )

QA Split

where QAsplit = AX. N {Y : X C 'YSp/it(Y)}-

Manuel Di Agostino

Proof.

asplit is well-defined since vspic is a complete M-morphism since it is
based on set operators. The fact that it forms a Galois connection
follows immediately from the definition of asgx [CC77]. O
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The Generic Abstract Domain

The framework is designed to be parametric. We assume the
existence of two abstract domains interacting to approximate the
Split State.
1. Heap Analysis (H)
Approximates the reference state YRer.

> Lattice: (H, i, U, M)

> Widening: Vi

2. Value Analysis (V)
Approximates the value state Yy;,).
> Lattice: (V,Cy, Uy, My)
> Widening: Vy



The combined abstract state is the Cartesian product:

Y=HxV
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equipped with pointwise lattice operators.

Heap and value analysis



Connecting Heap and Value: Heap Ildentifiers

The two domains need a common language to communicate.

> Heap Domain (H): Knows about pointers, structure, and
reachability. It abstracts memory addresses (A).
> Value Domain (V): Knows about numerical properties

(intervals, polyhedra), but operates on a set of variables, not
addresses.
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Connecting Heap and Value: Heap ldentifiers

The two domains need a common language to communicate.

> Heap Domain (H): Knows about pointers, structure, and
reachability. It abstracts memory addresses (A).
> Value Domain (V): Knows about numerical properties

(intervals, polyhedra), but operates on a set of variables, not
addresses.

The Solution: Abstract Heap ldentifiers

The Heap Domain exports a set of symbolic names, called Heap
Identifiers.

Id = {idy,ida, ..., idn}

> To H, they represent abstract nodes (or regions of memory).

> To V, they are treated simply as variables.
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Value Analysis Concretization

Since the Value Analysis operates on identifiers, its concretization
produces stores with abstract heap identifiers instead of concrete
locations.

Abstract Store on ldentifiers

Storepg : HId — p(Val)

Codomain is a set of values because a summary node maps to many
concrete references with different values.

Definition (y)

The concretization of an abstract value state © € V produces:
Environments in Envyy

Stores in Storem

Missing link: We have values for identifiers, but we need to know
where these identifiers are in memory.
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Heap Analysis Concretization

The Heap Analysis tracks the shape and symbolically represents
nodes using Hld. To concretize, it must map these symbols to
concrete locations.

The Mapping Function v

The heap concretization provides a function relating identifiers to
concrete locations (Ref x Fld):

Vg : HId = p(Ref x Fld)

Definition (v)
Formally, 77 : H = o(Zgref x (HId — p(Ref x Fid)))
It returns a set of pairs containing:

> A concrete state oQ.

> A concretization of heap identifiers ygi5 to compute 7.



The Final Combined Concretization 75

Finally, we define the concretization of the abstract state (h,v) into
the Split domain.

Definition (v5)
Formally, fyi((ﬁ,ﬁ)) DI o(Zspiit)
’YS((B,T})) = {(owu, (ey, $v)) | conditions hold}

where:

> (€v, spmg) € W(0)
(Value Analysis provides Envy, and Storepp)

> (on, 7Hld) € ’Yﬁ(h)
(Heap Analysis provides a state in Xgef and ID-map)

> sy € ’YStorem(SHTdv 7%)
(Combined to get concrete Storeyai)
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Heap and value analysis

The Abstraction Hierarchy

Concrete States Split States Abstract States
) (Zspiit) (x)
Ref State (Zger) Heap (H)
Var Ref TH -
Unified State (5) T a
Var Content Ref FId Ref ,
I #L R E——— T
1  next 2 Map Hid — Ref
Ref FId Content # # (l,ap =)
#1 f 1 Val State (Zval) H Storepg Value (V)
#1  next | #2 Ref Fld Val7storely HId Val | vy | Hid Int
#2 f 2 — #1 f 1 plf 1 plf [1.1]
"sel #2 f 2 p2f 2 p2.f [2.2]




Soundness conditions

Remark (Requirements for Soundness (Conditions C1-C5))

The validity of the following Lemma relies on strict conditions on

RGIEE
> Structural Consistency (C1, C3, C5):
%> All heap identifiers must be concretizable (C1).
»> Identifiers must represent disjoint memory portions to allow
independent updates (C3).
%> Non-summary nodes must map to exactly one reference (C5).

Manuel Di Agostino

> Mathematical Properties (C2, C4): These ensure 5 is
meet-preserving. The heap identifiers’ concretization of
the intersection of heaps is the pointwise intersection of the
heap identifiers’ concretization of all the intersected states.
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Lemma (Galois Connection)

Since 75 is a complete N-morphism (based on set operators), it
induces a valid Galois Connection:

(9(Zspiie), ) +—Z_% (=,0)

P

where ass = AX. N{Y : X C (Y)}.
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Abstract Preprocessing: Function R |

In the abstract domain, the Value Analysis (V) tracks information on
Heap lIdentifiers (abstract nodes), not on raw pointer paths.

The Abstract Solution

We define the abstract preprocessing function R to translate field
accesses into the corresponding set of Heap lIdentifiers provided by
the Heap Analysis (H).

Unlike the concrete case, this translation may return multiple results
(e.g., if a variable points to multiple abstract nodes).

Abstract Transformation Rules :

Rz, h] = {z}
Rlz.f,h] =1 where (z.f,h) =g I

Note: I is the set of heap identifiers (e.g., {idy,ids}) retrieved by the
Heap Analysis.
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Abstract Preprocessing: Function R 11

Semantics Integration (Updates)

Once R resolves the field access, the Value Analysis performs the
assignment. Formally, we compute the join of all possible outcomes
for each identifier i returned by R:

Tnew = |_[{7' | i € Rz f,h], (i = ..., 0) =y 7'}
The final state depends on the precision of the Heap Analysis:

> Strong Update: If i is unique and definite (nisSum(7)), the old
value is replaced:

6post = Unew

> Weak Update: If i is a summary node or multiple identifiers
exist, we must join with the previous state to preserve soundness:

Vpost = U I—'V Unew
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Instantiation: Heap Analyses - PA

The framework is validated by plugging in two different heap
abstractions:

Pointer Analysis (PA)
A flow-sensitive analysis based on Allocation Site Abstraction
[And94; MSV10].
»> Heap ldentifiers: Defined by the allocation site label and the

field name: L
Hldpa = Lab x Field

» Substitutions: Since abstract locations are statically determined,
no dynamic splitting occurs. Therefore, substitutions are always
empty (0).
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Instantiation: Heap Analysis - TVAL+

TVAL+ (Shape Analysis)
Based on the 3-valued logic engine TVLA [SRWO02].

»> ldentity: Introduces Name Predicates to track nodes across
transformations.

»> Normalization: A merge/split procedure ensures states are
normalized.

% Substitutions: Generated dynamically to inform the value
analysis about node materialization and summarization.

Manuel Di Agostino
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Instantiation: Value Analysis

The generic framework allows standard numerical domains to track
information over heap contents.

Numerical Domains
Standard domains (e.g., Intervals, Octagons) are plugged into
the value component.
» Transparency: Heap ldentifiers (HId) are treated transparently,
exactly as local variables.
» Handling Summaries: To preserve soundness, assignments to
summary nodes (isSum(id) = true) are handled via weak
updates (join of old and new values).

Conclusion on Instantiation: The framework successfully bridges static
approaches (PA) and dynamic approaches (TVLA) with numerical reasoning
without losing soundness.
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Conclusion and Contributions

The paper presented a formal approach to the static analysis of
object-oriented languages.
Key Contributions:

> Generic Framework: A unified formalization to automatically
combine arbitrary Heap and Value analyses.

> Handling Dynamics: The first generic framework capable of
supporting materialization and summarization of heap
identifiers.

> Soundness: Proved soundness of the combination, relying on
standard Abstract Interpretation operators and a specific
interface (Substitutions).
> Versatility: Successfully instantiated with:
% Standard Pointer Analysis (Static).

» TVAL+ / TVLA (Dynamic Shape Analysis).
%> Numerical Domains (Value Analysis).
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Heap and value analysis

Concrete States Split States Abstract States

x) (Zspiit) ()
Ref State (ZRer) Heap (H)
Var Ref -
Unified State (5) T a
Var Content Ref FId Ref ,
| A T e T
1 next 2 Map Hid — Ref
Ref Fild Content #* # (,,ap s}
#1 f 1 Val State (Sva) | ¢ Storegg Value (V)
#1 next 42 Ref Fld ValJstworelzHld Val | 7y | Id  Int
#2 f 2 #1 f 1 plf 1 plf [1.1]

“lsett #2 f 2 p2.f 2 p2.f [2.9]

Thank you for the attention!
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